Title of article :
Aerodynamic design optimization of nacelle/pylon position on an aircraft
Author/Authors :
Li، نويسنده , , Jing and Gao، نويسنده , , Zhenghong and Huang، نويسنده , , Jiangtao and Zhao، نويسنده , , Ke، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry. The multi-block structured grid deformation technique is established by Delaunay graph mapping method. The optimization objects of aerodynamic characteristics are evaluated by solving Navier–Stokes equations on the basis of multi-block structured grid. The advanced particle swarm optimization (PSO) is utilized as search algorithm, which combines the Kriging model as surrogate model during optimization. The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle. The results indicate that the aerodynamic interference between the parts is significantly reduced. The optimization design system established in this paper has extensive applications and engineering value.
Keywords :
Delaunay graph mapping , Free form deformation (FFD) , Kriging model , Navier–Stokes equations , Space-shape , particle swarm optimization (PSO)
Journal title :
Chinese Journal of Aeronautics
Journal title :
Chinese Journal of Aeronautics