Title of article :
Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite
Author/Authors :
Fernandez، نويسنده , , G.J and Murr، نويسنده , , L.E، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.
Keywords :
Metal-matrix composite , Tool Wear , Friction-stir welding , Shape optimization , TEM analysis
Journal title :
Materials Characterization
Journal title :
Materials Characterization