Title of article :
The effect of SiC nanoparticles on deformation texture of ARB-processed steel-based nanocomposite
Author/Authors :
Jamaati، نويسنده , , Roohollah and Toroghinejad، نويسنده , , Mohammad Reza and Mohtadi-Bonab، نويسنده , , M.A. and Edris، نويسنده , , Hossein and Szpunar، نويسنده , , Jerzy A. and Salmani، نويسنده , , Mohammad Reza، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
13
From page :
150
To page :
162
Abstract :
In this study, the influence of SiC nanoparticles on deformation texture of steel-based nanocomposite fabricated by accumulative roll bonding process was investigated. It was found that there was a texture transition from the rolling texture to the shear texture for both pure interstitial free steel and steel-based nanocomposite. However, the texture transition occurred in different cycles for the pure steel (the third cycle) and steel-based nanocomposite (the first cycle). It was realized that the fraction of low misorientation angle grain boundaries was decreased and the fraction of high misorientation angle grain boundaries was increased by the number of cycles. Also, recrystallization occurred in the pure steel and steel-based nanocomposite samples after the third and first cycles, respectively. In addition, the occurrence of recrystallization in steel-based nanocomposite was sooner than that of pure steel. At the early stage of dynamic recrystallization in processed steels, the {011}< 100 >-oriented grains were evolved and the fraction of grains with α-fiber and γ-fiber orientations was slightly decreased. The formation of the rolling texture in the steel-based nanocomposite samples was different from the typical rolling texture for the pure steel samples, due to the presence of the SiC nanoparticles in the nanocomposite. The weak rolling texture was attributed to the high stored energy of deformation, which was, in turn, due to low deformation temperature.
Keywords :
Accumulative roll bonding process , Texture , Nanocomposite , Nanoparticle
Journal title :
Materials Characterization
Serial Year :
2014
Journal title :
Materials Characterization
Record number :
2269469
Link To Document :
بازگشت