Title of article :
Calcination of low-grade laterite for concentration of Ni by magnetic separation
Author/Authors :
Kim، نويسنده , , Jungah and Dodbiba، نويسنده , , Gjergj and Tanno، نويسنده , , Hideaki and Okaya، نويسنده , , Katsunori and Matsuo، نويسنده , , Seiji and Fujita، نويسنده , , Toyohisa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
With the continuous depletion of high-grade nickel ores such as millerite and niccolite, nickeliferous laterites have become the major source for the production of nickel metal. However, only 42% of the world’s production of nickel comes from laterites, since the concentration of Ni is relatively low (ca. 2 wt.%). In addition, other metals, such as magnesium, iron and silicon can be found in laterite, which make the concentration of nickel even more difficult.
s study, a low-grade nickeliferous laterite ore was first calcinated and then processed by using a wet magnetic separator in order to recover nickel. Since, the ore contains both Ni and Fe, the calcination of laterite is effective in altering the crystalline structure of Fe species and therefore its magnetic properties, which in turn enable the selective concentration of nickel by magnetic separation that is an easy and environmentally-friendly technique. The experimental results have indicated the importance of carefully controlling: (1) the calcination temperature; (2) the pulp density and (3) applied magnetic field strength. The main finding of this work was that magnetic separation is effective in recovering 48% of nickel from laterite, increasing the Ni grade in the recovered product from 1.5% to 2.9%, when prior to the separation the ore was calcinated at 500 °C for 1 h.
Keywords :
CALCINATION , nickel , magnetite , Hematite , Magnetic separation , Laterite ore
Journal title :
Minerals Engineering
Journal title :
Minerals Engineering