Title of article :
Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials
Author/Authors :
Chiang، نويسنده , , Yi Wai and Santos، نويسنده , , Rafael M. and Monballiu، نويسنده , , Annick and Ghyselbrecht، نويسنده , , Karel and Martens، نويسنده , , Johan A. and Mattos، نويسنده , , Maria Laura T. and Gerven، نويسنده , , Tom Van and Meesschaert، نويسنده , , Boudewijn، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
10
From page :
116
To page :
125
Abstract :
Bioleaching is a potential route for the valorisation of low value natural and waste alkaline materials. It may serve as a pre-treatment stage to mineral carbonation and sorbent synthesis processes by increasing the surface area and altering the mineralogy of the solid material and by generating an alkaline rich (Ca and Mg) aqueous stream. It may also aid the extraction of high value metals from these materials (e.g. Ni), transforming them into valuable ore reserves. The bioleaching potential of several bacteria (Bacillus circulans, Bacillus licheniformis, Bacillus mucilaginosus, Sporosarcina ureae) and fungi (Aspergillus niger, Humicola grisea, Penicillium chrysogenum) towards the alteration of chemical, mineralogical and morphological properties of pure alkaline materials (wollastonite and olivine) and alkaline waste residues (AOD and BOF steel slags, and MSWI boiler fly ash) at natural pH (neutral to basic) was assessed. Bioleaching was conducted using one-step and two-step methodologies. Increased solubilisation of alkaline earth metals and nickel were verified. Alteration in basicity was accompanied by alteration of mineralogy. AOD slag experienced solubilisation–precipitation mechanism, as evidenced by the decline of primary phases (such as dicalcium-silicate, bredigite and periclase) and the augmentation of secondary phases (e.g. merwinite and calcite). Nickel-bearing minerals of olivine (clinochlore, lizardite, nimite and willemseite) significantly diminished in quantity after bioleaching. Altered mineralogy resulted in morphological changes of the solid materials and, in particular, in increased specific surface areas. The bioleaching effect can be attributed to the production of organic acids (principally gluconic acid) and exopolysaccharides (EPSs) by the microorganisms. The similarities between fungal and bacterial mediated bioleaching suggest that biogenic substances contribute mostly to its effects, as opposed to bioaccumulation or other direct action of living cells.
Keywords :
nickel , Bioleaching , Mineral Processing , Waste processing , Alkaline materials
Journal title :
Minerals Engineering
Serial Year :
2013
Journal title :
Minerals Engineering
Record number :
2277014
Link To Document :
بازگشت