Title of article :
The combustion properties of 2,6,10-trimethyl dodecane and a chemical functional group analysis
Author/Authors :
Won، نويسنده , , Sang Hee and Dooley، نويسنده , , Stephen and Veloo، نويسنده , , Peter S. and Wang، نويسنده , , Haowei and Oehlschlaeger، نويسنده , , Matthew A. and Dryer، نويسنده , , Frederick L. and Ju، نويسنده , , Yiguang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
9
From page :
826
To page :
834
Abstract :
The global combustion characteristics of 2,6,10-trimethyl dodecane (trimethyl dodecane), a synthetic fuel candidate species, have been experimentally investigated by measuring extinction limits for strained laminar diffusion flames at 1 atm and reflected shock ignition delays at 20 atm. The Derived Cetane Number (DCN) of trimethyl dodecane, (59.1) and Hydrogen/Carbon (H/C) ratio (2.133) are very close to the DCN and H/C ratio of a previously studied synthetic aviation fuel, S-8 POSF 4734 (S-8) and its surrogate mixture composed of n-dodecane/iso-octane (58.9 and 2.19, respectively). Identical high temperature global kinetic reactivities are observed in all experiments involving the aforementioned compounds. However, at temperatures below ∼870 K, the S-8 surrogate mixture has ignition delay times approximately a factor of two faster. A chemical functional group analysis identifies that the methylene (CH2) to methyl (CH3) ratio globally correlates the low temperature alkylperoxy radical reactivity for these large paraffinic fuels. This result is further supported experimentally, by comparing observations using a surrogate fuel mixture of n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethyl nonane (iso-cetane) that shares the same methylene-to-methyl ratio as trimethyl dodecane, in addition to the same DCN and H/C ratio. Measurements of both diffusion flame extinction and reflected shock ignition delays show that the n-cetane/iso-cetane model fuel has very similar combustion behavior to trimethyl dodecane at all conditions studied. A kinetic modeling analysis on the model fuel suggests the formation of alkylhydroperoxy radicals (QOOH) to be strongly influenced by the absence or presence of the methyl and methylene functional groups in the fuel chemical structure. The experimental observations and analyses suggest that paraffinic based fuels having high DCN values may be more appropriately emulated by further including the CH2 to CH3 ratio as an additional combustion property target, as DCN alone fails to fully distinguish the relative reaction characteristics of low temperature kinetic phenomena.
Keywords :
Alternative diesel fuel , Combustion properties , Surrogate fuel , Trimethyl dodecane , Farnesane
Journal title :
Combustion and Flame
Serial Year :
2014
Journal title :
Combustion and Flame
Record number :
2277330
Link To Document :
بازگشت