Title of article :
Hyperfine interaction in InAs/GaAs self-assembled quantum dots: dynamical nuclear polarization versus spin relaxation
Author/Authors :
Krebs، نويسنده , , Olivier and Eble، نويسنده , , Benoît and Lemaître، نويسنده , , Aristide and Voisin، نويسنده , , Paul and Urbaszek، نويسنده , , Bernhard and Amand، نويسنده , , Thierry and Marie، نويسنده , , Xavier، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
We report on the influence of the hyperfine interaction on the optical orientation of singly charged excitons X ± in self-assembled InAs/GaAs quantum dots. All measurements were carried out on individual quantum dots studied by micro-photoluminescence at low temperature. We show that the hyperfine interaction leads to an effective partial spin relaxation, under 50 kHz modulated excitation polarization, which becomes, however, strongly inhibited under steady optical pumping conditions because of dynamical nuclear polarization. This optically created magnetic-like nuclear field can become very strong (up to ∼ 4 T ) when it is generated in the direction opposite to a longitudinally applied field, and exhibits then a bistability regime. This effect is very well described by a theoretical model derived in a perturbative approach, which reveals the key role played by the energy cost of an electron spin flip in the total magnetic field. Finally, we emphasize the similarities and differences between X + and X − trions with respect to the hyperfine interaction, which turn out to be in perfect agreement with the theoretical description. To cite this article: O. Krebs et al., C. R. Physique 9 (2008).
Keywords :
Quantum dots , Spin relaxation , Hyperfine interaction , Boîtes quantiques , Optical orientation , Interaction hyperfine , Orientation optique , Relaxation de spin
Journal title :
Comptes Rendus Physique
Journal title :
Comptes Rendus Physique