Title of article :
Reducing the number of orthogonal factors in linear coregionalization modeling
Author/Authors :
Emery، نويسنده , , Xavier and Pelلez، نويسنده , , Marيa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
8
From page :
149
To page :
156
Abstract :
The simulation of vector random fields whose spatial correlation structure is represented by a linear coregionalization model can be performed by decomposing the vector components into spatially orthogonal factors and by simulating each factor separately. However, when the number of basic nested structures is large, so is the number of factors, making simulation computationally demanding. aper proposes a methodology to construct linear coregionalization models with as many nested structures as desired, together with as few orthogonal factors as possible. The construction rests on the decomposition of the model coregionalization matrices into pairwise commuting matrices, followed by a factorization by principal component analysis. The proposed approach is illustrated through a case study in mineral resources evaluation and compared to the traditional fitting procedure, obtaining an equally good fit of the direct and cross variograms but with significantly less factors.
Keywords :
Principal component analysis , Linear coregionalization model , Coregionalized variables , Direct and cross variograms
Journal title :
Computers & Geosciences
Serial Year :
2012
Journal title :
Computers & Geosciences
Record number :
2288847
Link To Document :
بازگشت