Title of article :
SIPPI: A Matlab toolbox for sampling the solution to inverse problems with complex prior information: Part 1—Methodology
Author/Authors :
Thomas Mejer Hansen، نويسنده , , Thomas and Skou Cordua، نويسنده , , Knud and Caroline Looms، نويسنده , , Majken and Mosegaard، نويسنده , , Klaus، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
From a probabilistic point-of-view, the solution to an inverse problem can be seen as a combination of independent states of information quantified by probability density functions. Typically, these states of information are provided by a set of observed data and some a priori information on the solution. The combined states of information (i.e. the solution to the inverse problem) is a probability density function typically referred to as the a posteriori probability density function. We present a generic toolbox for Matlab and Gnu Octave called SIPPI that implements a number of methods for solving such probabilistically formulated inverse problems by sampling the a posteriori probability density function. In order to describe the a priori probability density function, we consider both simple Gaussian models and more complex (and realistic) a priori models based on higher order statistics. These a priori models can be used with both linear and non-linear inverse problems. For linear inverse Gaussian problems we make use of least-squares and kriging-based methods to describe the a posteriori probability density function directly. For general non-linear (i.e. non-Gaussian) inverse problems, we make use of the extended Metropolis algorithm to sample the a posteriori probability density function. Together with the extended Metropolis algorithm, we use sequential Gibbs sampling that allow computationally efficient sampling of complex a priori models. The toolbox can be applied to any inverse problem as long as a way of solving the forward problem is provided. Here we demonstrate the methods and algorithms available in SIPPI. An application of SIPPI, to a tomographic cross borehole inverse problems, is presented in a second part of this paper.
Keywords :
Nonlinear , sampling , inversion , A priori , a posteriori
Journal title :
Computers & Geosciences
Journal title :
Computers & Geosciences