Title of article :
Required but disguised: environmental signals in limestone–marl alternations
Author/Authors :
Bِhm، نويسنده , , Florian and Westphal، نويسنده , , Hildegard and Bornholdt، نويسنده , , Stefan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
18
From page :
161
To page :
178
Abstract :
The nature of rhythmic carbonate-rich successions such as limestone–marl alternations has been, and still is, subject to controversy. The possibility of an entirely diagenetic origin for the rhythmic calcareous alternations is discarded by most authors. One problem with an entirely diagenetic, self-organized development of limestone–marl alternations is the fact that limestone and marl beds in many examples are laterally continuous over hundreds of meters or even kilometers. In an entirely self-organized system, lateral coupling would be very limited; thus one would expect that, rather than laterally continuous beds, randomly distributed elongate nodules would form. We address the origin of limestone–marl alternations using a computer model that simulates differential diagenesis of rhythmic calcareous successions. The setup uses a cellular automaton model to test whether laterally extensive, rhythmic calcareous alternations could develop from homogeneous sediments in a process of self-organization. Our model is a strong simplification of early diagenesis in fine-grained, partly calcareous sediments. It includes the relevant key mechanisms to the question whether an external trigger is required in order to obtain laterally extensive limestone–marl alternations. Our model shows that diagenetic self-organization alone is not sufficient to produce laterally extensive, correlatable beds. Although an external control on bedding formation could be considered to have solved the problem as commonly assumed, we here suggest an interesting third possibility: the rhythmic alternations were formed through the interaction of both an external trigger and diagenetic self-organization. In particular we observe that a very limited external trigger, either in time or amplitude, readily forms correlatable beds in our otherwise diagenetic model. Remarkably, the resulting rhythmites often do not mirror the external trigger in a one-to-one fashion and may differ in phase, frequency and number of couplets. Therefore, the interpretation of calcareous rhythmites as a one-to-one archive of climate fluctuations may be misleading. Parameters independent of diagenetic alteration should be considered for unequivocal interpretation.
Keywords :
Computer simulation , Cellular automaton , self-organization , Carbonate diagenesis , climate archives , limestone–marl alternations
Journal title :
Palaeogeography, Palaeoclimatology, Palaeoecology
Serial Year :
2003
Journal title :
Palaeogeography, Palaeoclimatology, Palaeoecology
Record number :
2290461
Link To Document :
بازگشت