Title of article :
Distribution and contribution of major phytoplankton groups to carbon cycling across contrasting conditions of the subtropical northeast Atlantic Ocean
Author/Authors :
Fernando and Gutiérrez-Rodrيguez، نويسنده , , Andrés and Latasa، نويسنده , , Mikel and Agustي، نويسنده , , Susana and Duarte، نويسنده , , Carlos M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
15
From page :
1115
To page :
1129
Abstract :
The relation between trophic regime and phytoplankton composition and function in oceanic systems is well accepted in oceanography. However, the relative dynamics and carbon cycling contributions of different phytoplankton groups across gradients of ocean richness are not fully understood. In this work we investigated phytoplankton dynamics along two transects from the NW African coastal upwelling to open-ocean waters of the north Atlantic subtropical gyre. We adopted a pigment-based approach to characterize community structure and to quantify group-specific growth and grazing rates and associated carbon fluxes. Changes in pigment cell concentration during the incubation experiments due to photoadaptation were corrected to obtain reliable rates. The oceanic region was dominated by Prochlorococcus (PRO) (45±7% of total chlorophyll a) while diatoms dominated in upwelling waters (40±37%). Phytoplankton grew faster (μ=0.78±0.26 d−1) and free of nutrient limitation (μ/μn=0.98±0.42) in the coastal upwelling region, with all groups growing at similar rates. In oceanic waters, the growth rate of bulk phytoplankton was lower (μ=0.52±0.16 d−1) and nutrient limited (μ/μn=0.68±0.19 d−1). Diatoms (0.80±0.39 d−1) and Synechococcus (SYN) (0.72±0.25 d−1) grew faster than Prymnesiophyceae (PRYMN) (0.62±0.26 d−1) and PRO (0.46±0.18 d−1). The growth rates of PRO and SYN were moderately nutrient limited (μ/μn=0.81 and 0.91, respectively), while the limitation for diatoms (μ/μn=0.71) and PRYMN (μ/μn=0.37) was more severe. Microzooplankton grazing rate was higher in upwelling (0.68±0.32 d−1) than in oceanic waters (0.37±0.19 d−1), but represented the main loss pathway for phytoplankton in both systems (m/μ=0.90±0.32 and 0.69±0.24, respectively). Carbon flux through phytoplankton, produced and grazed, increased from offshore to coastal (∼2 to ∼200 μg C L−1 d−1), with diatoms dominating the flux in the upwelling region (52%) while PRYMN (40%) and PRO (30%) dominated in the open ocean.
Keywords :
Subtropical northeast Atlantic , microzooplankton grazing , Phytoplankton growth , carbon fluxes , Nutrient limitation
Journal title :
Deep Sea Research Part I: Oceanographic Research Papers
Serial Year :
2011
Journal title :
Deep Sea Research Part I: Oceanographic Research Papers
Record number :
2309615
Link To Document :
بازگشت