Title of article :
Surface layer mixing during the SAGE ocean fertilization experiment
Author/Authors :
Stevens، نويسنده , , Craig and Ward، نويسنده , , Brian and Law، نويسنده , , Cliff and Walkington، نويسنده , , Matt، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
10
From page :
776
To page :
785
Abstract :
Vessel-based observations of the oceanic surface layer during the 14-day 2004 SAGE ocean fertilization experiment were conducted using ADCP, CTD and temperature microstructure in a frame of reference moving with a patch of injected SF6 tracer. During the experiment the mixed layer depth zmld ranged between 50 and 80 m, with several re-stratifying events that brought zmld up to less than 40 m. These re-stratifying events were not directly attributable to local surface-down development of stratification and were more likely associated with horizontal variation in density structure. Comparison between the CTD and a one-dimensional model confirmed that the SAGE experiment was governed by 3-d processes. A new method for estimating zmld was developed that incorporates a component that is proportional to density gradient. This highlighted the need for well-conditioned near-surface data which are not always available from vessel-based survey CTD profiles. A centred-displacement scale, Lc, equivalent to the Thorpe lengthscale, reached a maximum of 20 m, with the eddy-centroid located at around 40 m depth. Temperature gradient microstructure-derived estimates of the vertical turbulent eddy diffusivity of scalar (temperature) material yielded bin-averaged values around 10−3 m2 s−1 in the pycnocline rising to over 10−2 m2 s−1 higher in the surface layer. This suggests transport rates of nitrate and silicate at the base of the surface layer generate mixed layer increases of the order of 38 and 13 mmol/m2/day, respectively, during SAGE. However, the variability in measured vertical transport processes highlights the importance of transient events like wind mixing and horizontal intrusions.
Keywords :
Mixed layer depth , Stratification , Surface layer , turbulent mixing , Vertical eddy diffusivity , Iron fertilization , Sage
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Serial Year :
2011
Journal title :
Deep-sea research part II: Topical Studies in oceanography
Record number :
2315713
Link To Document :
بازگشت