Author/Authors :
Podgَrski، نويسنده , , Maciej، نويسنده ,
Abstract :
Objectives
s study five novel dimethacrylates of different chain lengths having rigid aromatic rings were synthesized and proposed as possible dental monomers for dental resin mixtures.
s
onomers were prepared by the reaction of glycidyl methacrylate with dicarboxylic acid esters obtained from phthalic anhydride and 1,3-propylene, 1,4-butylene, 1,5-penthylene and 1,6-hexylene glycols. The addition reaction of glycidyl methacrylate and the acidic compound was carried out in the presence of tetraethylammonium bromide. The fifth monomer was obtained from 1,5-penthylene glycol-based dimethacrylate by blocking its hydroxyl groups with acetyl groups. The monomers were photo-copolymerized with triethyleneglycol dimethacrylate (TEGDMA) in the presence of a photoinitiator which was 2,2-dimethoxy-2-phenyloacetophenone. Unfilled polymers were evaluated for photopolymerization conversion and volumetric curing shrinkage. Water sorption, water solubility, flexural strength and hardness were measured. The prepared polymers were also subjected to dynamic mechanical studies (DMA).
s
s show that, increasing the distance between double bonds decreases flexural modulus and hardness. As expected, the curing shrinkage increased with increasing degree of conversion. The acetylation of hydroxyl groups resulted in improved water uptake properties of the compositions. It was demonstrated that, depending upon the content of acetyl groups in the network, the glass transition temperature may be significantly lowered. In polymers with large amounts of pendant groups, β relaxation overlaps with α relaxation (glass transition temperature), and it is the former that discloses the maximum on the tan δ curve.
icance
stematic change in the length of the new dimethacrylates provided insight into the effects on the resultant material properties. It was shown in the article that the properties of the new monomers compare favorably with properties of the commercially available resins.
Keywords :
Curing shrinkage , Glass transition , Dynamic Mechanical Analysis , Dimethacrylates , Photopolymerization