Title of article :
Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites
Author/Authors :
Zhang، نويسنده , , Fan and Allen، نويسنده , , Andrew J. and Levine، نويسنده , , Lyle E. and Vaudin، نويسنده , , Mark D. and Skrtic، نويسنده , , Drago and Antonucci، نويسنده , , Joseph M. and Hoffman، نويسنده , , Kathleen M. and Giuseppetti، نويسنده , , Anthony A. and Ilavsky، نويسنده , , Jan، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Abstract :
AbstractObjective
estigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials.
s
ite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques.
s
ablished that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials.
icance
e first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.
Keywords :
Dental material , Acid-medicated conversion , structure , Amorphous calcium phosphate , ACP-based composites , Dental composites , Amorphous conversion
Journal title :
Dental Materials
Journal title :
Dental Materials