Title of article :
Paleomagnetism and 40Ar / 39Ar Geochronology of Yemeni Oligocene volcanics: Implications for timing and duration of Afro-Arabian traps and geometry of the Oligocene paleomagnetic field
Author/Authors :
Riisager، نويسنده , , Peter and Knight، نويسنده , , Kim B. and Baker، نويسنده , , Joel A. and Ukstins Peate، نويسنده , , Ingrid and Al-Kadasi، نويسنده , , Mohamed and Al-Subbary، نويسنده , , Abdulkarim and Renne، نويسنده , , Paul R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
A combined paleomagnetic and 40Ar / 39Ar study was carried out along eight stratigraphically overlapping sections in the Oligocene Afro-Arabian flood volcanic province in Yemen (73 sites). The composite section covers the entire volcanic stratigraphy in the sampling region and represents five polarity zones that are correlated to the geomagnetic polarity time scale based on 40Ar / 39Ar ages from this and previous studies. The resulting magnetostratigraphy is similar to that of the conjugate margin in Ethiopia. The earliest basaltic volcanism took place in a reverse polarity chron that appears to correspond to C11r, while the massive rhyolitic ignimbrite eruptions correlated to ash layers in Oligocene Indian Ocean sediment 2700 km away from the Afro-Arabian traps, appear to have taken place during magnetochron C11n. The youngest ignimbrite was emplaced during magnetochron C9n. Both 40Ar / 39Ar and paleomagnetic data suggest rapid < 1 Ma eruption of the basal basalt units and punctuated eruption of the upper silicic units over a duration potentially as long as 3 Ma with interspersed eruptive hiatuses. Eruption of the basal basalts may have preceded the Oi2 cooling event.
leomagnetic pole λ = 74.2°N, φ = 249.1°E (A95 = 3.6°; N = 48) is supported by a positive reversal test. Paleosecular variation, estimated as the angular standard deviation of the VGP distribution 14.2° + 2.3° / − 1.7°, is close to expected, suggesting that the paleomagnetic pole represents a time-averaged field. The pole is in excellent accord with the paleomagnetic poles obtained from the Ethiopian part of the Afro-Arabian province, after closure of the Red Sea. By analyzing Afro-Arabian paleomagnetic data in conjunction with contemporaneous paleomagnetic poles available from different latitudes we argue that the Oligocene paleomagnetic field was dominated by the axial dipole with insignificant non-dipole field contributions.
Keywords :
Yemen , Afro-Arabian traps , Oligocene , 40Ar/39Ar geochronology , magnetostratigraphy , Paleomagnetic pole , Large igneous province
Journal title :
Earth and Planetary Science Letters
Journal title :
Earth and Planetary Science Letters