Title of article :
Chains, clumps, and strings: Magnetofossil taphonomy with ferromagnetic resonance spectroscopy
Author/Authors :
Kopp، نويسنده , , Robert E. and Weiss، نويسنده , , Benjamin P. and Maloof، نويسنده , , Adam C. and Vali، نويسنده , , Hojotollah and Nash، نويسنده , , Cody Z. and Kirschvink، نويسنده , , Joseph L.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
10
To page :
25
Abstract :
Magnetotactic bacteria produce intracellular crystals of magnetite or greigite, the properties of which have been shaped by evolution to maximize the magnetic moment per atom of iron. Intracellular bacterial magnetite therefore possesses traits amenable to detection by physical techniques: typically, narrow size and shape distributions, single-domain size and arrangement in linear chains, and often crystal elongation. Past strategies for searching for bacterial magnetofossils using physical techniques have focused on identifying samples containing significant amounts of single domain magnetite or with narrow coercivity distributions. Searching for additional of traits would, however, increase the likelihood that candidate magnetofossils are truly of biological origin. Ferromagnetic resonance spectroscopy (FMR) is in theory capable of detecting the distinctive magnetic anisotropy produced by chain arrangement and crystal elongation. Here we present analyses of intact and lysed magnetotactic bacteria, dilutions of synthetic magnetite, and sedimentary samples of modern carbonates from the Great Bahama Bank, Oligocene–Miocene deep-sea muds from the South Atlantic, and Pleistocene lacustrine deposits from Mono Basin, California. We demonstrate that FMR can distinguish between intact bacterial magnetite chains, collapsed chains, and linear strings of magnetite formed by physical processes. We also show that sediments in which the magnetization is likely carried by bacterial magnetite have FMR spectra resembling those of intact or altered bacterial magnetite chains.
Keywords :
magnetotactic bacteria , Ferromagnetic resonance , magnetofossils , Biogenic magnetite
Journal title :
Earth and Planetary Science Letters
Serial Year :
2006
Journal title :
Earth and Planetary Science Letters
Record number :
2325227
Link To Document :
بازگشت