Title of article :
The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain
Author/Authors :
Vigier، نويسنده , , N. and Burton، نويسنده , , K.W. and Gislason، نويسنده , , S.R. and Rogers، نويسنده , , N.W. and Duchene، نويسنده , , S. and Thomas، نويسنده , , L. and Hodge، نويسنده , , E. and Schaefer، نويسنده , , B.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
16
From page :
258
To page :
273
Abstract :
U-series isotopes have been measured in the dissolved phase, suspended load and bedload of the main rivers draining basaltic catchments in Iceland. For the dissolved phase, (234U/238U) and (238U/230Th) range between 1.08 and 2.2, and 7.4 and 516, respectively. For the suspended load and bedload, (234U/238U) and (238U/230Th) range from 0.97 to 1.09 and from 0.93 to 1.05, respectively. Chemical erosion rates, calculated from dissolved major elements, range between 13 and 333 t km− 2 yr− 1. Physical erosion rates have also been estimated, from existing data, and range between 21 and 4864 t/km2/yr, with an average of 519 t km− 2 yr− 1. U-series disequilibria indicate that weathering in Iceland operates at close to steady-state conditions. A model of continuous weathering indicates a maximum weathering timescale of 10 kyr, with an average rate of uranium release into water of 1.6 · 10− 4 yr− 1, which is significant when compared to granitic terrains located at similar latitudes and to tropical basaltic terrains. All river waters display (234U/238U) greater than secular equilibrium, consistent with the effects of alpha-recoil. The same dissolved phase (234U/238U) exhibit a negative trend with physical erosion rates, explained by the dominant effect of close-to-congruent chemical weathering of hyaloclastites in the younger basaltic terrains. Therefore, chemical erosion rate and mineral weathering susceptibility play a major role in determining 234U–238U disequilibria in basaltic river waters. Comparison of global data for river basins in which weathering was recently strongly limited indicates a negative correlation between silicate weathering rates estimated with major elements and the age of weathering estimated with U-series disequilibria. This strongly suggests a key role of time and soil thickness on the chemical erosion of silicates.
Keywords :
U-series disequilibria , Iceland , basalt , weathering timescale , steady-state , erosion
Journal title :
Earth and Planetary Science Letters
Serial Year :
2006
Journal title :
Earth and Planetary Science Letters
Record number :
2325339
Link To Document :
بازگشت