Title of article :
A global study of volcanic infrasound characteristics and the potential for long-range monitoring
Author/Authors :
Dabrowa، نويسنده , , A.L. and Green، نويسنده , , D.N. and Rust، نويسنده , , A.C. and Phillips، نويسنده , , J.C.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
11
From page :
369
To page :
379
Abstract :
Volcanic infrasound from explosive eruptions is detectable at distances up to 1000 s of km and is often recorded on the International Monitoring System (IMS) infrasound network. Though infrasound produced by individual volcanoes has previously been studied, more general relationships between infrasound characteristics and eruption parameters remain unclear. Therefore, using a dataset comprising 110 events at 39 globally distributed volcanoes, we assess the ability of the IMS to monitor remote volcanoes and investigate whether volcanic infrasound exhibits consistent trends across a range of eruption styles and intensities. Acoustic pressure amplitude and frequency content of the volcanic infrasound were measured, and acoustic energy was also calculated. These were compared, along with the maximum distance of detection for each event, to the maximum plume height reported for the event, which was used as a proxy for event intensity. Of the events investigated 62% were detected by at least one infrasound station. The maximum distance at which an event was detected generally increased with the plume height, and infrasound produced during the eruption of Manam, PNG in January 2005, which produced a plume which rose over 20 km above the summit, was detected at a distance of 10,671 km. Total acoustic energy and acoustic pressure amplitude (corrected for geometrical spreading) increased with plume height, whilst the lowest frequency present in the volcanic infrasound decreased. Additionally, relationships seen between infrasound characteristics and eruption plume height indicate that analyses of this data alone could constrain vital estimates of plume heights for otherwise un-observed eruptions. Taken together these findings indicate that if made available for this purpose in the future, the IMS infrasound network could complement existing monitoring techniques by detecting and characterising eruptions at remote volcanoes which often have no local monitoring networks.
Keywords :
Volcano infrasound , Volcano monitoring , Explosive volcanism , Remote monitoring
Journal title :
Earth and Planetary Science Letters
Serial Year :
2011
Journal title :
Earth and Planetary Science Letters
Record number :
2329532
Link To Document :
بازگشت