Title of article :
Low cost RISC implementation of intelligent ultra fast charger for Ni–Cd battery
Author/Authors :
Petchjatuporn، نويسنده , , Panom and Sirisuk، نويسنده , , Phaophak and Khaehintung، نويسنده , , Noppadol and Sunat، نويسنده , , Khamron and Wicheanchote، نويسنده , , Phinyo and Kiranon، نويسنده , , Wiwat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
185
To page :
192
Abstract :
This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel–cadmium (Ni–Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni–Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger.
Keywords :
Battery Charger , Ni–Cd battery , Fast charging , GA , GRNN , RBF
Journal title :
Energy Conversion and Management
Serial Year :
2008
Journal title :
Energy Conversion and Management
Record number :
2333547
Link To Document :
بازگشت