Author/Authors :
khalilnejad، arash نويسنده , , A. and Riahy، نويسنده , , G.H.، نويسنده ,
Abstract :
In this study, design and modelling of hybrid wind–photovoltaic system is done for the purpose of hydrogen production through water electrolysis. Actual data for weekly solar irradiation, wind speed, and ambient temperature of Sahand, Iran, are used for performance simulation and analysis of the system examined. The detailed model of components is used. The 10 kW alkaline electrolyzer model, which produces hydrogen, is based on combination of empirical electrochemical relationships, thermodynamics, and heat transfer theory. The operation of this system is optimized using imperial competitive colony algorithm. The objective of optimization is to maximize hydrogen production, considering minimum production of average excess power. This system is analysed in three different conditions of using just wind turbine (WT), photovoltaic (PV) array, and combination of them as power source, producing hydrogen of 8297, 4592, and 10,462 mol, respectively. As for this result and with analysing other results of simulation, it is clarified that the hybrid system is more useful for this study. In hybrid form the ratio of average produced power to nominal power for PV array is 0.247 and for WT is 0.493 which demonstrates that WT is more effective in production.
Keywords :
Wind turbine , Electrolyzer , Photovoltaic , Hydrogen , ICA