Title of article :
Characterization of a fracture specimen for crack growth in epoxy due to thermal fatigue
Author/Authors :
Tang، نويسنده , , T. and Hui، نويسنده , , C.Y. and Retsos، نويسنده , , H.G. and Kramer، نويسنده , , E.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
791
To page :
805
Abstract :
Finite element simulations are carried out to characterize a new fracture specimen, consisting of an outer circular epoxy ring bonded to an inner circular invar plate for accelerated thermal fatigue testing. Radial cracks are introduced in the epoxy ring. The growth of these radial cracks is correlated to the applied energy release rate G. We studied the dependence of G on the crack length, the specimen geometry and the elastic modulus. For short cracks, G is obtained in closed form. Analysis is carried out to determine the critical thermal buckling load the specimen can withstand. Experimental results show that the fatigue crack growth rate per thermal cycle da/dN is given by da/dN = 0.51(ΔG)0.38 for cycling between 4 and 100 °C but by da/dN = 0.25(ΔG)0.24 for cycling between 20 and 85 °C, where ΔG is the difference of the energy release rate between the highest and lowest temperatures during a thermal cycle. More severe thermal cycles produce considerably larger fatigue crack growth rates than less severe ones at the same ΔG. This result also implies that isothermal fatigue tests will probably be inadequate to predict thermal fatigue crack growth in epoxies.
Keywords :
energy release rate , Stress intensity factor , Buckling , Thermal fatigue , Thermal Stress
Journal title :
ENGINEERING FRACTURE MECHANICS
Serial Year :
2005
Journal title :
ENGINEERING FRACTURE MECHANICS
Record number :
2340938
Link To Document :
بازگشت