Title of article :
Quantification of spatial uncertainty in secondary compression of reclaimed land using a simulated geologic profile
Author/Authors :
Ryu، نويسنده , , Dongwoo and Kim، نويسنده , , Donghee and Lee، نويسنده , , Woojin and Kim، نويسنده , , Hyungmok، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Spatial estimation of the thickness and the depth of a geological profile have been regarded as an important procedure for design on soft ground. The minimum variance criterion, which has often been used in traditional kriging techniques, does not always guarantee optimal estimates for the decision-making process in geotechnical engineering. In this study, we used a geostatistical simulation framework to determine the optimal thickness of the consolidation layer and the optimal area in which the magnitude of the secondary compression exceeds a design criterion via a sequential indicator simulation (SIS) and a loss function. We applied the geostatistical simulation to one newly constructed reclaimed land in Korea, and showed that our optimal estimates of the secondary compression, in which the loss function applies a greater penalty for underestimation, were larger than those of the E-type estimates. The design procedure and method presented in this paper can be useful in the decision-making for similar geotechnical engineering designs because the expected loss during the estimation is minimized.
Keywords :
Geostatistical simulation , Secondary compression , Loss function , Sequential Indicator Simulation , Spatial uncertainty
Journal title :
Engineering Geology
Journal title :
Engineering Geology