Title of article :
Debonding analysis of fiber-reinforced-polymer strengthened beams: Cohesive zone modeling versus a linear elastic fracture mechanics approach
Author/Authors :
Rabinovitch، نويسنده , , Oded، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
18
From page :
2842
To page :
2859
Abstract :
A linear elastic fracture mechanics (LEFM) approach and a cohesive interface (cohesive zone) modeling approach to the debonding analysis of concrete beams strengthened with externally bonded fiber-reinforced-polymer (FRP) strips are studied and compared. The analytical models that are based on the two approaches are presented and discussed. The cohesive interface model is formulated using a potential function and it takes into account the shear effects, the effect of the peeling stresses, and the coupling of the shear and the peeling effects. This model takes the form of a set on nonlinear differential equations. The LEFM model combines stress analysis using the high order theory and fracture analysis using the concepts of the energy release rate and the J-integral. In addition, an algorithm that converts the results of the LEFM model into the equilibrium path of the debonding process is developed. The main advantages and disadvantages of the two approaches are also discussed. The two approaches are compared in terms of their applicability to quantify and describe the debonding process in various cases that include a single shear test, an edge peeling test, and a beam specimen strengthened with FRP.
Keywords :
Debonding , Cohesive zone modeling , J-integral , Fracture mechanics , Civil engineering structures , Crack growth
Journal title :
ENGINEERING FRACTURE MECHANICS
Serial Year :
2008
Journal title :
ENGINEERING FRACTURE MECHANICS
Record number :
2342344
Link To Document :
بازگشت