Title of article :
Unicyclic graphs with strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers
Author/Authors :
-، - نويسنده Azarbaijan Shahid Madani University Amjadi, J. , -، - نويسنده University of Blida LAMDA-RO Laboratory Chellali, M. , -، - نويسنده Azarbaijan Shahid Madani University Falahat, M. , -، - نويسنده Azarbaijan Shahid Madani University Sheikholeslami, S. M.
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2015
Pages :
11
From page :
1
To page :
11
Abstract :
-
Abstract :
A 2-emph{rainbow dominating function} (2RDF) on a graph $G=(V, E)$ is afunction $f$ from the vertex set $V$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin V$ with $f(v)=emptyset$ thecondition $bigcup_{uin N(v)}f(u)={1,2}$ is fulfilled. A 2RDF $f$ isindependent (I2RDF) if no two vertices assigned nonempty sets are adjacent.The emph{weight} of a 2RDF $f$ is the value $omega(f)=sum_{vin V}|f (v)|$.The 2-emph{rainbow domination number} $gamma_{r2}(G)$ (respectively, theemph{independent $2$-rainbow domination number } $i_{r2}(G)$ ) is the minimumweight of a 2RDF (respectively, I2RDF) on $G$. We say that $gamma_{r2}(G)$ isstrongly equal to $i_{r2}(G)$ and denote by $gamma_{r2}(G)equiv i_{r2}(G)$,if every 2RDF on $G$ of minimum weight is an I2RDF. In this paper wecharacterize all unicyclic graphs $G$ with $gamma_{r2}(G)equiv i_{r2}(G)$.
Journal title :
Transactions on Combinatorics
Serial Year :
2015
Journal title :
Transactions on Combinatorics
Record number :
2343599
Link To Document :
بازگشت