Title of article :
A classification of finite groups with integral bi-Cayley graphs
Author/Authors :
-، - نويسنده Departmant of Mathematical Sciences, Isfahan University of Technology, Isfahan, Iran Arezoomand, Majid , -، - نويسنده Department of Mathematics, Isfahan University of Technology, Isfahan, Iran Taeri, Bijan
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2015
Pages :
7
From page :
55
To page :
61
Abstract :
-
Abstract :
The bi-Cayley graph of a finite group $G$ with respect to a subset $Ssubseteq G$‎, ‎which is denoted by $BCay(G,S)$‎, ‎is the graph with‎ ‎vertex set $Gtimes{1,2}$ and edge set ${{(x,1)‎, ‎(sx,2)}mid xin G‎, ‎ sin S}$‎. ‎A‎ ‎finite group $G$ is called a textit{bi-Cayley integral group} if for any subset $S$ of‎ ‎$G$‎, ‎$BCay(G,S)$ is a graph with integer eigenvalues‎. ‎In this paper we prove‎ ‎that a finite group $G$ is a bi-Cayley integral group if and only if $G$ is isomorphic to‎ ‎one of the groups $Bbb Z_2^k$‎, ‎for some $k$‎, ‎$Bbb Z_3$ or $S_3$‎.
Journal title :
Transactions on Combinatorics
Serial Year :
2015
Journal title :
Transactions on Combinatorics
Record number :
2344008
Link To Document :
بازگشت