Title of article :
A combined experimental–numerical investigation of fracture of polycrystalline cubic boron nitride
Author/Authors :
Carolan، نويسنده , , D. and Ivankovic، نويسنده , , A. and Murphy، نويسنده , , N.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
Numerical modelling of a series of experimental Single Edge V-Notched Beam tests was carried out for a number of grades of polycrystalline cubic boron nitride using the finite volume method (FV) and cohesive zone model approach. The effect of notch root radius observed experimentally was reproduced numerically via a unique CZM for each material examined. It was also found that the shape of the cohesive zone model can be significant, especially when the material has a relatively high fracture energy. It was also demonstrated that the experimentally observed drop in fracture toughness with increase in test rate was not explainable in terms of the system dynamics. It was found that in order to predict the experimental fracture loads for a range of loading rates, it was necessary to modify the CZM in such a way as to preserve the micro-structural length scale information of the material embedded within the CZM.
Keywords :
brittle fracture , Finite volume method , cohesive zone model , OpenFOAM-ext
Journal title :
ENGINEERING FRACTURE MECHANICS
Journal title :
ENGINEERING FRACTURE MECHANICS