Title of article :
A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
Author/Authors :
Wu، نويسنده , , Chih-Hung and Tzeng، نويسنده , , Gwo-Hshiung and Lin، نويسنده , , Rong-Ho، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
4725
To page :
4735
Abstract :
This study developed a novel model, HGA-SVR, for type of kernel function and kernel parameter value optimization in support vector regression (SVR), which is then applied to forecast the maximum electrical daily load. A novel hybrid genetic algorithm (HGA) was adapted to search for the optimal type of kernel function and kernel parameter values of SVR to increase the accuracy of SVR. The proposed model was tested at an electricity load forecasting competition announced on the EUNITE network. The results showed that the new HGA-SVR model outperforms the previous models. Specifically, the new HGA-SVR model can successfully identify the optimal type of kernel function and all the optimal values of the parameters of SVR with the lowest prediction error values in electricity load forecasting.
Keywords :
Hybrid genetic algorithm (HGA) , Support vector regression (SVR) , parameter optimization , Kernel function optimization , Electrical load forecasting , Forecasting accuracy
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2345813
Link To Document :
بازگشت