Title of article :
An iterative semi-explicit rating method for building collaborative recommender systems
Author/Authors :
Jeong، نويسنده , , Buhwan and Lee، نويسنده , , Jaewook and Cho، نويسنده , , Hyunbo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
6
From page :
6181
To page :
6186
Abstract :
Collaborative filtering plays the key role in recent recommender systems. It uses a user-item preference matrix rated either explicitly (i.e., explicit rating) or implicitly (i.e., implicit feedback). Despite the explicit rating captures the preferences better, it often results in a severely sparse matrix. The paper presents a novel iterative semi-explicit rating method that extrapolates unrated elements in a semi-supervised manner. Extrapolation is simply an aggregation of neighbor ratings, and iterative extrapolations result in a dense preference matrix. Preliminary simulation results show that the recommendation using the semi-explicit rating data outperforms that of using the pure explicit data only.
Keywords :
collaborative filtering , Data sparsity , Explicit rating , Recommender system , Semi-explicit rating
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2346164
Link To Document :
بازگشت