Title of article :
A fuzzy clustering algorithm based on evolutionary programming
Author/Authors :
Dong، نويسنده , , Hongbin and Dong، نويسنده , , Yuxin and Zhou، نويسنده , , Cheng and Yin، نويسنده , , Guisheng and Hou، نويسنده , , Wei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
11792
To page :
11800
Abstract :
In this paper, a fuzzy clustering method based on evolutionary programming (EPFCM) is proposed. The algorithm benefits from the global search strategy of evolutionary programming, to improve fuzzy c-means algorithm (FCM). The cluster validity can be measured by some cluster validity indices. To increase the convergence speed of the algorithm, we exploit the modified algorithm to change the number of cluster centers dynamically. Experiments demonstrate EPFCM can find the proper number of clusters, and the result of clustering does not depend critically on the choice of the initial cluster centers. The probability of trapping into the local optima will be very lower than FCM.
Keywords :
Fuzzy c-means algorithm , Evolutionary programming , Cluster validity , EPFCM
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2346964
Link To Document :
بازگشت