Title of article :
Improving the generalization performance of RBF neural networks using a linear regression technique
Author/Authors :
Lin، نويسنده , , C.L. and Wang، نويسنده , , J.F. and Chen، نويسنده , , C.Y. and Chen، نويسنده , , C.W. and Yen، نويسنده , , C.W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
5
From page :
12049
To page :
12053
Abstract :
In this paper we present a method for improving the generalization performance of a radial basis function (RBF) neural network. The method uses a statistical linear regression technique which is based on the orthogonal least squares (OLS) algorithm. We first discuss a modified way to determine the center and width of the hidden layer neurons. Then, substituting a QR algorithm for the traditional Gram–Schmidt algorithm, we find the connected weight of the hidden layer neurons. Cross-validation is utilized to determine the stop training criterion. The generalization performance of the network is further improved using a bootstrap technique. Finally, the solution method is used to solve a simulation and a real problem. The results demonstrate the improved generalization performance of our algorithm over the existing methods.
Keywords :
neural network , function approximation , Orthogonal least squares , Radial basis function , Generalization performance
Journal title :
Expert Systems with Applications
Serial Year :
2009
Journal title :
Expert Systems with Applications
Record number :
2346994
Link To Document :
بازگشت