Title of article :
BioDR: Semantic indexing networks for biomedical document retrieval
Author/Authors :
Lourenço، نويسنده , , Anلlia and Carreira، نويسنده , , Rafael and Glez-Peٌa، نويسنده , , Daniel and Méndez، نويسنده , , José R. and Carneiro، نويسنده , , Sَnia and Rocha، نويسنده , , Luis M. and Dيaz، نويسنده , , Fernando and Ferreira، نويسنده , , Eugénio C. and Rocha، نويسنده , , Isabel and Fdez-Riverola، نويسنده , , Florentino and Rocha، نويسنده , , Miguel، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
3444
To page :
3453
Abstract :
In Biomedical research, retrieving documents that match an interesting query is a task performed quite frequently. Typically, the set of obtained results is extensive containing many non-interesting documents and consists in a flat list, i.e., not organized or indexed in any way. This work proposes BioDR, a novel approach that allows the semantic indexing of the results of a query, by identifying relevant terms in the documents. These terms emerge from a process of Named Entity Recognition that annotates occurrences of biological terms (e.g. genes or proteins) in abstracts or full-texts. The system is based on a learning process that builds an Enhanced Instance Retrieval Network (EIRN) from a set of manually classified documents, regarding their relevance to a given problem. The resulting EIRN implements the semantic indexing of documents and terms, allowing for enhanced navigation and visualization tools, as well as the assessment of relevance for new documents.
Keywords :
Biomedical document retrieval , Document relevance , Named entity recognition , Semantic indexing document network , Enhanced Instance Retrieval Network
Journal title :
Expert Systems with Applications
Serial Year :
2010
Journal title :
Expert Systems with Applications
Record number :
2347748
Link To Document :
بازگشت