Title of article :
ECG beat classification using particle swarm optimization and radial basis function neural network
Author/Authors :
Korürek، نويسنده , , Mehmet and Dogan، نويسنده , , Berat، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
7563
To page :
7569
Abstract :
This paper presents a method for electrocardiogram (ECG) beat classification based on particle swarm optimization (PSO) and radial basis function neural network (RBFNN). Six types of beats including Normal Beat, Premature Ventricular Contraction (PVC), Fusion of Ventricular and Normal Beat (F), Atrial Premature Beat (A), Right Bundle Branch Block Beat (R) and Fusion of Paced and Normal Beat (f) are obtained from the MIT-BIH arrhythmia database. Four morphological features are extracted from each beat after the preprocessing of the selected records. For classification stage of the extracted features, a RBFNN structure which is evolved by particle swarm optimization is used. Several experiments are performed over the test set and it is observed that the proposed method classifies ECG beats with a smaller size of network without making any concessions on the classification performance.
Keywords :
Radial basis function neural networks , particle swarm optimization , ECG , Arrhythmia classification
Journal title :
Expert Systems with Applications
Serial Year :
2010
Journal title :
Expert Systems with Applications
Record number :
2348467
Link To Document :
بازگشت