Title of article :
An optimal method for prediction and adjustment on byproduct gas holder in steel industry
Author/Authors :
Zhang، نويسنده , , Xiaoping and Zhao، نويسنده , , Jun and Wang، نويسنده , , Wei and Cong، نويسنده , , Liqun and Feng، نويسنده , , Weimin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
4588
To page :
4599
Abstract :
To maintain the balance of byproduct gas holder is an important task in optimal scheduling of byproduct energy in steel industry. However, this is often influenced by many factors and is difficult to obtain a precise mechanism model for analysis. In this paper, an optimal method for prediction and adjustment on byproduct gas holder is proposed. Considering the different operation styles of gasholders, both single and multiple gasholders level prediction models are established by machine learning methodology. And, a hybrid parameter optimization algorithm is developed to optimize the model for high prediction accuracy. Then, based on the predicted gasholder level, the optimal adjustment amount is calculated by a novel reasoning method to sustain the gasholder within safety zone. This method has been verified in the Energy Center of Baosteel, China. The results demonstrate that the proposed approach can precisely predict and adjust gasholders and provide a remarkable guidance for reasonable scheduling of byproduct gases.
Keywords :
Optimal scheduling of byproduct gases , Gasholder level prediction , Machine Learning , Intelligent optimization algorithm
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2349119
Link To Document :
بازگشت