Title of article :
Genetic regulatory network-based symbiotic evolution
Author/Authors :
Hu، نويسنده , , Jhen-Jia and Li، نويسنده , , Tzuu-Hseng S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
18
From page :
4756
To page :
4773
Abstract :
The main theme of this paper is to present a novel evolution, the genetic regulatory network-based symbiotic evolution (GRNSE), to improve the convergent speed and solution accuracy of genetic algorithms. The proposed GRNSE utilizes genetic regulatory network (GRN) reinforcement learning to improve the diversity and symbiotic evolution (SE) initialization to achieve the parallelism. In particular, GRN-based learning increases the global rate by regulating members of genes in symbiotic evolution. To compare the efficiency of the proposed method, we adopt 41 benchmarks that contain many nonlinear and complex optimal problems. The influences of dimension, individual population size, and gene population size are examined. A new control parameter, the population rate is introduced to initiate the ratio between the gene and chromosome. Finally, all the studies of there 41 benchmarks demonstrate that from the statistic point of view, GRNSE give a better convergence speed and a more accurate optimal solution than GA and SE.
Keywords :
Symbiotic evolution , Evolutionary computations , genetic algorithm , Genetic regulatory network , Global optimization problem , reinforcement learning
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2349141
Link To Document :
بازگشت