Title of article :
Image segmentation using PSO and PCM with Mahalanobis distance
Author/Authors :
Zhang، نويسنده , , Yong and Huang، نويسنده , , Dan-Yang Ji، نويسنده , , Min and Xie، نويسنده , , Fuding، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
5
From page :
9036
To page :
9040
Abstract :
Fuzzy clustering algorithm is widely used in image segmentation. Possibilistic c-means algorithm overcomes the relative membership problem of fuzzy c-means algorithm, and has been shown to have satisfied the ability of handling noises and outliers. This paper replaces Euclidean distance with Mahalanobis distance in the possibilistic c-means clustering algorithm, and optimizes the initial clustering centers using particle swarm optimization method. Experimental results show that the proposed algorithm has a significant improvement on the effect and efficiency of segmentation comparing with the standard FCM clustering algorithm.
Keywords :
particle swarm optimization , Possibilistic C-means , Mahalanobis distance , image segmentation , Clustering
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2349632
Link To Document :
بازگشت