Title of article :
A randomized model ensemble approach for reconstructing signals from faulty sensors
Author/Authors :
Baraldi، نويسنده , , P. and Gola، نويسنده , , G. and Zio، نويسنده , , E. and Roverso، نويسنده , , D. and Hoffmann، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
14
From page :
9211
To page :
9224
Abstract :
On-line sensor monitoring aims at detecting anomalies in sensors and reconstructing their correct signals during operation. The techniques used for signal reconstruction are commonly based on auto-associative regression models. In full scale implementations however, the number of sensors to be monitored is often too large to be handled effectively by a single reconstruction model. In this paper we propose to tackle the problem by resorting to a pool (ensemble) of reconstruction models, each one handling an individual group of signals. This approach involves two main technical steps: firstly, a procedure for constructing signal groups, and secondly a procedure for combining the outputs of the reconstruction models associated to the groups. For the signal grouping step, a wrapper optimization search is proposed to identify the optimal number of groups in the ensemble and the size of the groups. For the model output aggregation step, a simple arithmetic average is adopted. Ensemble accuracy and robustness is achieved by promoting diversity between the signal groups through the use of the Random Feature Selection Ensemble (RFSE) technique in combination with the Bootstrapping AGGregatING (BAGGING) technique for training data selection. The individual reconstruction models are based on Principal Components Analysis (PCA). The proposed approach has been applied to a real case study concerning 215 signals monitored at a Finnish nuclear pressurized water reactor. The results obtained have been compared with those achieved by an equivalent ensemble of models based on a grouping directly optimized by a Multi-Objective Genetic Algorithm (MOGA).
Keywords :
Ensemble , Random feature selection , Diversity , Signal reconstruction , Bagging , Sensor monitoring
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2349655
Link To Document :
بازگشت