Title of article :
Region Contextual Visual Words for scene categorization
Author/Authors :
Liu، نويسنده , , Shuoyan and Xu، نويسنده , , De and Feng، نويسنده , , Songhe، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
11591
To page :
11597
Abstract :
This paper proposes a method for scene categorization by integrating region contextual information into the popular Bag-of-Visual-Words approach. The Bag-of-Visual-Words approach describes an image as a bag of discrete visual words, where the frequency distributions of these words are used for image categorization. However, the traditional visual words suffer from the problem when faced these patches with similar appearances but distinct semantic concepts. The drawback stems from the independently construction each visual word. This paper introduces Region-Conditional Random Fields model to learn each visual word depending on the rest of the visual words in the same region. Comparison with the traditional Conditional Random Fields model, there are two areas of novelty. First, the initial label of each patch is automatically defined based on its visual feature rather than manually labeling with semantic labels. Furthermore, the novel potential function is built under the region contextual constraint. The experimental results on the three well-known datasets show that Region Contextual Visual Words indeed improves categorization performance compared to traditional visual words.
Keywords :
Regional Contexts , Visual word , Scene categorization , conditional random fields
Journal title :
Expert Systems with Applications
Serial Year :
2011
Journal title :
Expert Systems with Applications
Record number :
2350101
Link To Document :
بازگشت