Title of article :
Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis
Author/Authors :
Boquete، نويسنده , , L. and Miguel-Jiménez، نويسنده , , J.M. and Ortega، نويسنده , , S. and Rodrيguez-Ascariz، نويسنده , , J.M. and Pérez-Rico، نويسنده , , C. and Blanco، نويسنده , , R.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
Glaucoma is a chronic ophthalmological disease that affects 5% of the 40–60-year-old population and can lead to irreversible blindness. The multifocal electroretinogram (mfERG) is a recently developed diagnostic technique that provides objective spatial data on the visual pathway and may be of potential benefit in early diagnosis of glaucoma. This paper analyses 13 morphological characteristics that define mfERG recordings and classifies them using a radial basis function network trained with the Extreme Learning Machine algorithm. When used to detect glaucomatous sectors, the method proposed produces sensitivity and specificity values of over 0.8.
Keywords :
morphological analysis , Multifocal electroretinogram (mfERG) , Glaucoma , Radial basis function , Extreme learning machine
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications