Title of article :
A forecasting system for car fuel consumption using a radial basis function neural network
Author/Authors :
Wu، نويسنده , , Jian-Da and Liu، نويسنده , , Jun-Ching، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
6
From page :
1883
To page :
1888
Abstract :
A predictive system for car fuel consumption using a radial basis function (RBF) neural network is proposed in this paper. The proposed work consists of three parts: information acquisition, fuel consumption forecasting algorithm and performance evaluation. Although there are many factors affecting the fuel consumption of a car in a practical drive procedure, in the present system the relevant factors for fuel consumption are simply decided as make of car, engine style, weight of car, vehicle type and transmission system type which are used as input information for the neural network training and fuel consumption forecasting procedure. In fuel consumption forecasting, to verify the effect of the proposed RBF neural network predictive system, an artificial neural network with a back-propagation (BP) neural network is compared with an RBF neural network for car fuel consumption prediction. The prediction results demonstrated the proposed system using the neural network is effective and the performance is satisfactory in terms of fuel consumption prediction.
Keywords :
Artificial neural network , Radial basis function algorithm , Car fuel consumption
Journal title :
Expert Systems with Applications
Serial Year :
2012
Journal title :
Expert Systems with Applications
Record number :
2351069
Link To Document :
بازگشت