Title of article :
Development and performance evaluation of neural network classifiers for Indian internet shoppers
Author/Authors :
Majhi، نويسنده , , Ritanjali and Majhi، نويسنده , , Babita and Panda، نويسنده , , Ganapati، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Abstract :
The rapid growth of usage of internet has paved the way towards the use of online shopping. Consumers’ behavior is one of the significant aspects that is considered by the service providers for the improvement of various services. Consumers are generally satisfied if their needs are fulfilled. In this paper an in depth investigation is made on the behavior of Indian consumers towards online shopping. Factor analysis is carried out to extract significant factors that affect online shopping of Indian consumers and these consumers are clustered based on their behavior, towards online shopping using hierarchical clustering. Employing the results of clustering in training of multilayer perceptron (MLP), functional link artificial neural network (FLANN) and radial basis function (RBF) networks efficient classifier models are developed. The performance of these classifiers are evaluated and compared with those obtained by conventional statistical based discriminant analysis. The simulation study demonstrates that the RBF network provides best classification performance of internet shoppers compared to those given by the FLANN, MLP and discriminant analysis based methods. The simulation study on the impact of different combination of inputs demonstrates that demographic input has least effect on classification performance. On the other hand the combination of psychological and cultural inputs play the most significant role in classification followed by psychological and then cultural inputs alone.
Keywords :
Consumer classification , Factor Analysis , Hierarchical clustering , Functional link artificial neural network , Discriminant analysis , Radial basis function neural network , Multilayer perceptron , Online shopping
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications