Title of article :
Learning feature-projection based classifiers
Author/Authors :
Dayanik، نويسنده , , Aynur، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
13
From page :
4532
To page :
4544
Abstract :
This paper aims at designing better performing feature-projection based classification algorithms and presents two new such algorithms. These algorithms are batch supervised learning algorithms and represent induced classification knowledge as feature intervals. In both algorithms, each feature participates in the classification by giving real-valued votes to classes. The prediction for an unseen example is the class receiving the highest vote. The first algorithm, OFP.MC, learns on each feature pairwise disjoint intervals which minimize feature classification error. The second algorithm, GFP.MC, constructs feature intervals by greedily improving the feature classification error. The new algorithms are empirically evaluated on twenty datasets from the UCI repository and are compared with the existing feature-projection based classification algorithms (FIL.IF, VFI5, CFP, k-NNFP, and NBC). The experiments demonstrate that the OFP.MC algorithm outperforms other feature-projection based classification algorithms. The GFP.MC algorithm is slightly inferior to the OFP.MC algorithm, but, if it is used for datasets with large number of instances, then it reduces the space requirement of the OFP.MC algorithm. The new algorithms are insensitive to boundary noise unlike the other feature-projection based classification algorithms considered here.
Keywords :
classification learning , Inductive learning , Feature projections
Journal title :
Expert Systems with Applications
Serial Year :
2012
Journal title :
Expert Systems with Applications
Record number :
2351484
Link To Document :
بازگشت