Title of article :
Correlation based dynamic time warping of multivariate time series
Author/Authors :
Bankَ، نويسنده , , Zoltلn and Abonyi، نويسنده , , Jلnos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2012
Pages :
10
From page :
12814
To page :
12823
Abstract :
In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for comparison of time series data where extensive a priori knowledge is not available. However, it is often expected a multivariate comparison method to consider the correlation between the variables as this correlation carries the real information in many cases. Thus, principal component analysis (PCA) based similarity measures, such as PCA similarity factor (SPCA), are used in many industrial applications. s paper, we present a novel algorithm called correlation based dynamic time warping (CBDTW) which combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets with complex correlation structure.
Keywords :
Dynamic time warping , Principal component analysis , Multivariate time series , Similarity , segmentation
Journal title :
Expert Systems with Applications
Serial Year :
2012
Journal title :
Expert Systems with Applications
Record number :
2352724
Link To Document :
بازگشت