Title of article :
Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic
Author/Authors :
Melin، نويسنده , , Patricia and Olivas، نويسنده , , Frumen and Castillo، نويسنده , , Oscar and Valdez، نويسنده , , Fevrier and Soria، نويسنده , , Jose and Valdez، نويسنده , , Mario، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
In this paper a new method for dynamic parameter adaptation in particle swarm optimization (PSO) is proposed. PSO is a metaheuristic inspired in social behaviors, which is very useful in optimization problems. In this paper we propose an improvement to the convergence and diversity of the swarm in PSO using fuzzy logic. Simulation results show that the proposed approach improves the performance of PSO. First, benchmark mathematical functions are used to illustrate the feasibility of the proposed approach. Then a set of classification problems are used to show the potential applicability of the fuzzy parameter adaptation of PSO.
Keywords :
Fuzzy Logic , particle swarm optimization , Fuzzy classifier , Dynamic parameter adaptation , Fuzzy classification system
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications