Author/Authors :
-، - نويسنده University of Kashmir Pirzada, Shariefuddin , -، - نويسنده University of Kashmir Ganie, Hilal
Abstract :
For a simple connected graph $G$ with $n$-vertices having Laplacian eigenvalues $mu_1$, $mu_2$, $dots$, $mu_{n-1}$, $mu_n=0$, and signless Laplacian eigenvalues $q_1, q_2,dots, q_n$, the Laplacian-energy-like invariant($LEL$) and the incidence energy ($IE$) of a graph $G$ are respectively defined as $LEL(G)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $IE(G)=sum_{i=1}^{n}sqrt{q_i}$. In this paper, we obtain some sharp lower and upper bounds for the Laplacian-energy-like invariant and incidence energy of a graph.