Title of article :
On Laplacian-energy-like invariant and incidence energy
Author/Authors :
-، - نويسنده University of Kashmir Pirzada, Shariefuddin , -، - نويسنده University of Kashmir Ganie, Hilal
Issue Information :
فصلنامه با شماره پیاپی 0 سال 2015
Pages :
11
From page :
25
To page :
35
Abstract :
-
Abstract :
For a simple connected graph $G$ with $n$-vertices having Laplacian eigenvalues‎ ‎$mu_1$‎, ‎$mu_2$‎, ‎$dots$‎, ‎$mu_{n-1}$‎, ‎$mu_n=0$‎, ‎and signless Laplacian eigenvalues $q_1‎, ‎q_2,dots‎, ‎q_n$‎, ‎the Laplacian-energy-like invariant($LEL$) and the incidence energy ($IE$) of a graph $G$ are respectively defined as $LEL(G)=sum_{i=1}^{n-1}sqrt{mu_i}$ and $IE(G)=sum_{i=1}^{n}sqrt{q_i}$‎. ‎In this paper‎, ‎we obtain some sharp lower and upper bounds for the Laplacian-energy-like invariant and incidence energy of a graph‎.
Journal title :
Transactions on Combinatorics
Serial Year :
2015
Journal title :
Transactions on Combinatorics
Record number :
2353753
Link To Document :
بازگشت