Title of article :
Securing high resolution grayscale facial captures using a blockwise coevolutionary GA
Author/Authors :
Rabil، نويسنده , , Bassem S. and Tliba، نويسنده , , Safa and Granger، نويسنده , , Eric and Sabourin، نويسنده , , Robert، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
14
From page :
6693
To page :
6706
Abstract :
In biometric systems, reference facial images captured during enrollment are commonly secured using watermarking, where invisible watermark bits are embedded into these images. Evolutionary Computation (EC) is widely used to optimize embedding parameters in intelligent watermarking (IW) systems. Traditional IW methods represent all blocks of a cover image as candidate embedding solutions of EC algorithms, and suffer from premature convergence when dealing with high resolution grayscale facial images. For instance, the dimensionality of the optimization problem to process a 2048 × 1536 pixel grayscale facial image that embeds 1 bit per 8 × 8 pixel block involves 49k variables represented with 293k binary bits. Such Large-Scale Global Optimization problems cannot be decomposed into smaller independent ones because watermarking metrics are calculated for the entire image. In this paper, a Blockwise Coevolutionary Genetic Algorithm (BCGA) is proposed for high dimensional IW optimization of embedding parameters of high resolution images. BCGA is based on the cooperative coevolution between different candidate solutions at the block level, using a local Block Watermarking Metric (BWM). It is characterized by a novel elitism mechanism that is driven by local blockwise metrics, where the blocks with higher BWM values are selected to form higher global fitness candidate solutions. The crossover and mutation operators of BCGA are performed on block level. Experimental results on PUT face image database indicate a 17% improvement of fitness produced by BCGA compared to classical GA. Due to improved exploration capabilities, BCGA convergence is reached in fewer generations indicating an optimization speedup.
Keywords :
BIOMETRICS , Genetic algorithms , Cooperative coevolution , Evolutionary Computation , Intelligent Watermarking , Grayscale texture masks
Journal title :
Expert Systems with Applications
Serial Year :
2013
Journal title :
Expert Systems with Applications
Record number :
2354006
Link To Document :
بازگشت