Title of article :
Collaborative pseudo-relevance feedback
Author/Authors :
Zhou، نويسنده , , Dong and Truran، نويسنده , , Mark and Liu، نويسنده , , Jianxun and Zhang، نويسنده , , Sanrong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Pages :
8
From page :
6805
To page :
6812
Abstract :
Pseudo-relevance feedback (PRF) is a technique commonly used in the field of information retrieval. The performance of PRF is heavily dependent upon parameter values. When relevance judgements are unavailable, these parameters are difficult to set. In the following paper, we introduce a novel approach to PRF inspired by collaborative filtering (CF). We also describe an adaptive tuning method which automatically sets algorithmic parameters. In a multi-stage evaluation using publicly available datasets, our technique consistently outperforms conventional PRF, regardless of the underlying retrieval model.
Keywords :
Pseudo-relevance feedback , information retrieval , collaborative filtering , Adaptive tuning
Journal title :
Expert Systems with Applications
Serial Year :
2013
Journal title :
Expert Systems with Applications
Record number :
2354027
Link To Document :
بازگشت