Title of article :
Fuzzy association rule mining approaches for enhancing prediction performance
Author/Authors :
Zhengwei and Sowan، نويسنده , , Bilal and Dahal، نويسنده , , Keshav and Hossain، نويسنده , , M.A. and Zhang، نويسنده , , Li and Spencer، نويسنده , , Linda، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2013
Abstract :
This paper presents an investigation into two fuzzy association rule mining models for enhancing prediction performance. The first model (the FCM–Apriori model) integrates Fuzzy C-Means (FCM) and the Apriori approach for road traffic performance prediction. FCM is used to define the membership functions of fuzzy sets and the Apriori approach is employed to identify the Fuzzy Association Rules (FARs). The proposed model extracts knowledge from a database for a Fuzzy Inference System (FIS) that can be used in prediction of a future value. The knowledge extraction process and the performance of the model are demonstrated through two case studies of road traffic data sets with different sizes. The experimental results show the merits and capability of the proposed KD model in FARs based knowledge extraction. The second model (the FCM–MSapriori model) integrates FCM and a Multiple Support Apriori (MSapriori) approach to extract the FARs. These FARs provide the knowledge base to be utilized within the FIS for prediction evaluation. Experimental results have shown that the FCM–MSapriori model predicted the future values effectively and outperformed the FCM–Apriori model and other models reported in the literature.
Keywords :
fuzzy C-mean , knowledge discovery , DATA MINING , Prediction , Fuzzy association rules , Apriori algorithms
Journal title :
Expert Systems with Applications
Journal title :
Expert Systems with Applications