Title of article :
A framework for tag-aware recommender systems
Author/Authors :
Kim، نويسنده , , Hyunwoo and Kim، نويسنده , , Hyoung-Joo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
10
From page :
4000
To page :
4009
Abstract :
In social tagging system, a user annotates a tag to an item. The tagging information is utilized in recommendation process. In this paper, we propose a hybrid item recommendation method to mitigate limitations of existing approaches and propose a recommendation framework for social tagging systems. The proposed framework consists of tag and item recommendations. Tag recommendation helps users annotate tags and enriches the dataset of a social tagging system. Item recommendation utilizes tags to recommend relevant items to users. We investigate association rule, bigram, tag expansion, and implicit trust relationship for providing tag and item recommendations on the framework. The experimental results show that the proposed hybrid item recommendation method generates more appropriate items than existing research studies on a real-world social tagging dataset.
Keywords :
Social tagging system , Tags , Hybrid framework , Recommendation
Journal title :
Expert Systems with Applications
Serial Year :
2014
Journal title :
Expert Systems with Applications
Record number :
2354747
Link To Document :
بازگشت