Title of article :
Efficient strategies for parallel mining class association rules
Author/Authors :
Nguyen، نويسنده , , Dang and Vo، نويسنده , , Bay and Le، نويسنده , , Bac، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
14
From page :
4716
To page :
4729
Abstract :
Mining class association rules (CARs) is an essential, but time-intensive task in Associative Classification (AC). A number of algorithms have been proposed to speed up the mining process. However, sequential algorithms are not efficient for mining CARs in large datasets while existing parallel algorithms require communication and collaboration among computing nodes which introduces the high cost of synchronization. This paper addresses these drawbacks by proposing three efficient approaches for mining CARs in large datasets relying on parallel computing. To date, this is the first study which tries to implement an algorithm for parallel mining CARs on a computer with the multi-core processor architecture. The proposed parallel algorithm is theoretically proven to be faster than existing parallel algorithms. The experimental results also show that our proposed parallel algorithm outperforms a recent sequential algorithm in mining time.
Keywords :
Associative classification , Class association rule mining , Parallel computing , Multi-core processor , DATA MINING
Journal title :
Expert Systems with Applications
Serial Year :
2014
Journal title :
Expert Systems with Applications
Record number :
2354838
Link To Document :
بازگشت