Title of article :
Learning and inspecting classification rules from longitudinal epidemiological data to identify predictive features on hepatic steatosis
Author/Authors :
Niemann، نويسنده , , Uli and Vِlzke، نويسنده , , Henry and Kühn، نويسنده , , Jens-Peter and Spiliopoulou، نويسنده , , Myra، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2014
Pages :
11
From page :
5405
To page :
5415
Abstract :
Personalized medicine requires the analysis of epidemiological data for the identification of subgroups sharing some risk factors and exhibiting dedicated outcome risks. We investigate the potential of data mining methods for the analysis of subgroups of cohort participants on hepatic steatosis. We propose a workflow for data preparation and mining on epidemiological data and we present InteractiveRuleMiner, an interactive tool for the inspection of rules in each subpopulation, including functionalities for the juxtaposition of labeled individuals and unlabeled ones. We report on our insights on specific subpopulations that have been discovered in a data-driven rather than hypothesis-driven way.
Keywords :
Medical Data mining , Classification rules , Hepatic steatosis , Subpopulation mining , Interactive data mining , Longitudinal epidemiological studies
Journal title :
Expert Systems with Applications
Serial Year :
2014
Journal title :
Expert Systems with Applications
Record number :
2354936
Link To Document :
بازگشت